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~;F’NERALIzED PACKAGES FOR ANALYSIS OF
VARIANCE AND CATEGORICAL DATA

This  paper groups (a) analysis of variance and (b) categorical
data problems into several classes and then describes genera l ,;ottware
packages tha t can ana lyz e all  classes of problems that have been de-
fined. The strengths and weaknesses of a variety ot software packages
are compared in terms of the classes of problems they can h a n d l e  and
the ease with which they can be used . A method for ana1y~ inq unbalanced
split—plot designs with currently available software is denezibed .

k
ANALYS i S OF VARIP~NCE

Unbalanced Designs

Psychologists doing field research often have unequa l samp le sizes
in different cells in analysis of variance designs. When unequal sample
sizes exist , the design is considered unbalanced . There art’ some nt at is-
tical complications associated with the least—squares analysi s of unba l-
anced designs , and appropriate software is more diff icu lt to find .

Statistical complications with unbalanced desiqns in c l u ~li’ st ’ve r .d
threats to validity of results. With balanced designs , the sums of
squares that go into the numerators of the F ratios for each t e r m  in
the model are i ridependent . Independence does not exist in the term in
the denominator , since the common sums of squares for error in the dt’-
nominator are used to test a variety of terms in the model. With tin-
balanced designs , however , the term in neither the numerator nor the

— denominator of an F ratio is independent , which may create increased
problems of Type I error , particularly in the case whei c many F t ests
are made on a large number of terms in an unbalanced design . With
split-plot analysis of variance designs (where one ut more factors are
repeated—measures factors), F tests are approximate rather than exact
particularly when unbalance exists. The expected mean square cueff 1-
cient for a term in the numerator o an F ratio will not be exact ly
the same as the coef ficient for the same term in the denomina tor , in
unbalanced split-plot designs , and the difference becomes L-’tr ~ie t  as
the unbalance becomes greater.

Another complication arises in the way the var iance is partitiouett
with unbalanced designs. The researcher has the option of par t  it  ion inq
the variance in a variety of ways depending on his objectives. When
unbalance exists , confounding between different terms in the model also
exists. In other words , the expected mean squares for each term in the
model contain a variety of extraneous components. These extraneous
components include some or all of the expected mean square components
for terms that come after the term of interest in the mode l statement .
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The researche~~’s object ive may be to construct  F r a t i o s  t h a t  have the
same expect ed mean squat e components ent ering into t h e  mt .~an squares as

hose t ound in t h e  analogous h~ lanced a n a l y s i s  of va r i ance  des ign—— i t t
o t he r words , t o  uncon ound expected mean squares t or a l l  t er m s in the
model. In a fixed—of t e ct  t a c t  or  í a  1 des ign , t h i s  would mean adj u s i  i ng
each t e r m  t o t  all the other term s in t he  model (by o rd er i n g  each term
of interest last i n  the model statement). When this is done , the sums
ot squares for all t , t r r s  in t h e  model , when added together , are always
l t~~~ t han the tot al sums of squares for the design. This approach in-
vo lves assigning only t hat portion of the  v ar i a n ce  that is unconfounded
t o  each term in the model and eliminating the confounded Port ion of the
variance .

The est ’arche r  may not wish t o  p a r t i t  ion the  va r iance  so that  the
expect  ed mean squat .~o are unconfounded by ext  raneous cOtTl l)Oflent s. In-
stead , the  r e s e ar ch t ’r  may wish  t o  p a r t  i t  ion t I r e  va r i ance  in a hierarchi-
cal manner , so t ha t  t lit  sums ot~ squares t or each term in  the  model , when
added , equa l t he t o t  al  sums 01 squares .  This type of par t  i t  ioninq is
done when the  ros, r r c t t e r  is w i l l i n g  t o  assume for theoret  ica l or prac—
t z cal reasons t h at  s are t e rms t a k e  pr t ’ce~lerict ’  over  othe t s , e . g .  , main
of  t e c t  s over  i n t er a c t  t o n s . Wiz en th e se  assumpt i ons  a r e  made , the expected
mean sq uar e s  t a r  t he t e rm s t z i t  a k ’  p r eceden t  -e over e the l  s are S t i l l
con f o i r n ~1ed w t h ext  r aueeus  expe ‘t e l  mean squa c comi ) O! lOrI  t s . However ,
mak inq the  as sumi t ion t l r . t  some var  i ~ih 1 es t ak e  p recedence  over  ot h er s ,
and t hen par t it r cmi n j  t he variance in a h i  e r a i ch  i cal m a n n e r  consis ten t
with these assumptions , is equival ent to takinq that portion of the
variance which is confounded and l s s r r m i r r q  tha t  t he  confounded variance
is due to t ho variable t hat takes precedence r a t  her than to the varia-
bles t h a t  , zr  e c o n t o u r r i ed  w i t h  i t  . This 1eo~~ l~ is a method of assiqn—
ing unconfounded variance to the appr opriate t e r m s  in the model , and
t h en  ass igninq that port ion of t h e  variance t h a t  is confound to one
term rather than t o  other terms t hat are confounded with it , by m aking
the assumption of precedence .

• Multivariate Anai~~~is of Variance

• Psycholoqists doirr q field research face not only unbalanced de-
signs but also designs with mult ipie depende nt  variables. A univariate
analysis of var iance  is often computed for each of a lat s ie  number of
dependent variables , which creates the problem of inflation of Pype I
error . When m u l t i ple u n i v a r ia t e  F tests are made , some will be signil i-
cant by chance alone . A problem with interpreting results arises when
significance is found with univariate F t e st s  at a l evel not much be-
yond what might be expected on the basis of chance .

• Multivariate analysis of variance controls for t h i s  type of in-
flation of Type I error. Multivariate analysis of variance reduces
each subject’s scores on each of the dependent  variables to one number ,
a number that is a simple linear combination of the subject ’s scores on
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each of the original dependent variables. Multivariate analysis of
var iance consists of a search for the linear combination of dependent
variables that discriminates best between levels of an independent
va riable in the sense of producing the largest possibl e u n i v a r i a te F
ratio (Harris , 1975). Significance for this largest possible F rat io
is determined by a crit ical value that is appropriate for it- , one that
takes into account the extreme capitalization on chance that was made
in  arriving at it . The original linear combination of dependent vari-
ables that discriminates best between levels of an independent variable
is the same as the primary discriminant function found with discrimi-
nant analysis.

Since multivariate test statistics are based on a linear combina-
t ion of dependent variables , there is no necessary one-to-one relation-
ship between univariate F rat ios and the m u l t i v a r i a t e  test s tat ist ic.
In other words , i t  is possible to have s ignif icant  un ivar i a t e  F ra t ios
but not to have siquiticance wi th  the  mul t iva r i a t e  test s t a t i s t i c ,  or
the reverse——with a significant multivariate test statistic and no sig-
nificant univariate F ratios. It is informative , however , it the re-
searcher finds significance with the univariate F ratios but not with
the multivariat e test statistic . When this is the case, the researcher
can best interpret  the s i g n i f i c a n t  u n i v a r ia t e  F ra t ios  as due to chance ,
i . e  • , the i r t f l a t  ed Type I e r r or  tha t  occurred when m u l t i p l e  F t est s  were
made.

The nonsig n i f i can t  m ult i var i a te  test s t a t i s t i c  i n d i c a t es t h a t  i t
was not possible to f ind  a linear combination of dependent variables
tha t  could produce a significant univariate F. In many cases, psycholo—

• g i s ts  may wish to run multivariate analyses of variance to find out
whether or not the significance that is found with multiple univariate
analyses is real , i.e., whether it is due to inflated Type I error.

Each univatiate analysis of variance design has a mult ivariate
analogue. As mentioned previously , it is difficult to find appropri-
ate software that can handle unbalanced analysis of variance designs

• and even more difficult for unbalanced multivariatt-’ analysis of van —
• ance designs. However , programs are available that can handle these

designs.

Random and Mixed Ef fec ts

As menti oned previously, analysis of var iance  designs can be clas-
sified as (a) balanced or unbalanced and (b) univariate or multivariate .
Other classifications of analysis of variance designs are also impor-
tant: (c) the classification of the design as a random , fixed , or
mixed model ; and (d) the classifiCation of the design as one with
repeated—measures factors or one without such factors.
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In the random model ,  the levels  of the independent vat  tables are
randomly selected , and researcher wishes to generalize his r e su l t s  to •

.iLl levels ot the independent variable within t lmt ’ p o p u lat i o n  ot tnt t’l Out

In he t iXed model, the levels selected exhaust the populat ion ot
inter eat , and t h e  esearcher wishes on i y  to gels’ ma l i  :e I e t hi’ so lt’ct el
levels t hat have been I ixed . In the  mixed model, some’ iisle ’pe .ndemit vat  t-
ablea are f ixed ef f e c t s , and some random ef f ec t s .

The c la ss i fi c at i o n  of a des ign  as a random , t ixed , om mixed rnodt’l
a f t  oct a the select ion of the appr opt t a t e  er ror  term . W i t h  t h e  random
or mixed mode l , the  expected mean squares for  seine or a l l  t enn s i t t  t hi’
model cent am addi t ional  components that are not found in  t he  f ix e d
inixiel. The appropriate error  term mu St also contain the o pp l op r i a t e
addit t ona l component s in i t s  expected mean square , to test t he sign i t  a -
catzce of a term that  contains these additional components .  W i t h  the
random or mixed model it is  sometimes necessary to construct entot t e rms
that  contain the appropriate  expected mean squares , inc luding  t h e  ap-
propri ate additional components, by doing arithmetic on the moan nqzm art ’u
of si’ lected terms in the mode l and then making a quasi —F t eat  wit Ii t hi ’
con st ructed error tom-rn . It is a lao common to Ii ni t ha t  w i t h  random ‘m
mixed mode is , etror te am: ;  with apprept tat e expect e~l mean squat  o t t  ox
but  cen t .i in too t o w  degrees of t reedomu to  make ’ t e s t s  t h i t  are at a l l
p o w e rfu l .

~~ lit-Plot Des i~~~s

The t~ ina l  c lassi f icat ion of analy ses  of var i ance  let ; i tjns made he m e
as between des ian;; t ha t  c o n t a i n  repeat ed—measures t act et a and t hos t’ t hat
do not . Des ign a  t h a t  have some tact era with  r e p eat e d  measures and SOint’

fact era w i t h ou t  repeat e l  measures ar e ot ’t eat cal  led api i t  —plo t  des i ~i mzs
I n these designs , m u l t i  p ie measux- t’ments a t e  made for - - the  same sub t t ’ct
em ‘ln i t  of analys is .  These di’s igais  crt’at e a fact or t e a  bet w eomt  sub tt’cts
(or un i t s)  d i f f e ren c e s , ami d the variance for this t ens is ext  m a c t ed
from the error variance used to tent t h e  r epea ted—measures  t crass. Pt or
var I amice I s reduced i ma t h i s  manner - , but no ate t he d e s i m e e s  of t m eedom
for the error  t erm (s) that are used to test the a e ~~’at ‘d t erms .
mode l s  also requ i re more m e ’~ tt  i ct I ye •ensumpt ions ot comast  atit  cotu c ’ I at i~~’at

bet ween i t ’  spouses at al l  love Is  ot each repeat e~l—mO5iSU let ; I act or .

Software Comper isons

Analys t ; ;  of variance software packaqea can be compamed in  t emi tas ot
t he i r  gene ra l i t y——the  ext emi t to which  t hey handle t h e  cat eqor j~ S t ’t slC~
signs that  were described previously: (a) balanced , nit a lam acod;  ib)  u n i —
Vat i at e , mu it ivar j o t  e ; (c) random , f i xed ; and (d l  w i t  h or w i t  bout t o—
peat ed measu res ( s p l i t  — p l o t  or tiet
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~ The Biomedical package (BMD) for the most part deals only with

balanced univariate analysis of variance designs (Dixon , 1973). The
program BMD12V can hand le ba lanced , multivarjate , or univariate analy-
ses of variance, including split—plot designs , for the fixed model only.
BMD12v can only handle balanced designs. A limited number of unbalanced ,

• univariate designs can be handled with other BMD programs. The programs
assume for the most part a fixed—effects model. The Statistical Package
for the Social Sciences (SPSS), release 06, has an analysis of variance
program that will handle balanced or unbalanced univariate , fixed , fac-
tor ial designs (Nie , Mull , Jenkins , Steiribreriner , & Bent, 1975). The
program cannot handle mul tivariate analyses , random or mixed models ,
or split—plot designs.

The program has only three preestabl ished ways of partitioning the
variance : (a) the “classic” option , in which main effects are adjusted ‘ I
for main effects only and interactions are adjusted for main effects
and interactions ; (b) the “regression” option , in which each term is
adjusted for all other terms; and (C)  the “hierarchical” option of ad-
justing each term only for the terms preceding it. With unbalanced
designs , the regression option produc~~ mean squares that are uncon—
founded by eliminating the confounded variance in the manner described
previously. Unfortunately , there is a programing error with this option
in release 06, which means it cannot be used. A multivariate analysis
of variance program is planned for SPSS , release 07. The OSIRIS package
contains a multivariate analysis of variance program , MANOVA , which can
handle for the fixed model univariate or multivariate analyses of vari-
ance for balanced or unbalanced designs. This program cannot handle
split—plot designs.

The most general analysis of var iance programs that the author is
aware of are (a) the MAD/RUMMAGE program (Bruce & Carter , 1974) and
(b) the MULTIVARIANCE program (Finn , 1974))- MAD is the original and
RUMMAGE is the updated version of the same generalized analysis of van —
ance program. RUMMAGE is updated and improved on a continuing basis.
Both MAD/RUMMAGE and MULTIVARIANCE can analyze any crossed or nested
design , including split-plot designs, that are either balanced or un-
balanced, for either univariate or inultivaniate analyses. These are
the only programs that the author is aware of that can handle unbalanced

1
The MAD/RUMMAGE package is available from Dr. Gale Bryce, Department

of Statistics , 204 TMCB , Brigham Young University , Provo, Utah 84602,
phone (801) 374—1211, extension 4505. Implementation is on IBM 360/370
as well as several non-IBM systems. Army Research Institute, Presidio
of Monterey Field Uni t, has a copy of MAD. The MULTIVARIANCE package
is available from International Educational Services, P.O. Box A3650,
Chicago, Illinois 60690, phone (312) 684—4920. Implementation is on
IBM 360/370, CDC 6000 series , UNIVAC 1108.
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split—plot do’; ta ns . bet h pm 0gm ama ~ , er r 51o u n i v a r a a t  e . tt i d  n a u l t  i v o t  a o l
cov .aa  t a t a c e  an a l ys t s  i w e l l .

Desi an : t , i t  e t r i e r i t  S. bet h t h e  ~4AI ’ Rt,1MMAiW .ati d t h e ’ MUi’1’ l \ ’ 1\~~1AN5 ~F’
pmogi’axn s h o v e  t h~~a m  ow-t a i t e r ; s t t h : .  and a . e a k r t c ’ ’ rs ’a i n  pa t t m ’ t m l . i m  . i i  ,..~~~~~,

bi t t  t e s a e ’t t i er  p r o~’t d e ’ a pitwe m I a m l  p~t s ’k. ts io t h at  ca r t  h an d le  pm .act  a c a  I ly  u r v
.ma lys is ot v.t t a 5uace pm el’ l oan . I’h~’ at  m i n s i t  ha am id w e a k t a e s a t  a el eo i t  a

i t a m  ca rt he ’ ~-omp .ar e l , •~ae a t t ~‘ng t h of flie stAb ~~r~tr~L.\t ;p proa r am i t;  t tie
a i ;rap i i  c m  t or t ime mod e ’ I at  51t e’ment t h a t  del  a n t’s I he a r t . i  I ~~~~ aS et \ , im a .- i t a t ’

I ’  a a i r  — ‘the a’ ;o a t ’rr t e m ‘ . model u t  at  om en t a in .a I e a r n  t rim a 1 tam t o mo at
tar-t om a • 0. 1.

Y~ hi)  A ( 1)  • U j i  + AU 1, 1)  • t .

I I  he a m r ; e ’ a  a s  t ro t  I .at at a l i i i  w i t  h o r a t e  a ing model at  .et e ’rr ’ r r t  a I r a  t I i i  a t ~‘mm
it ’ em  she ~Ot t  s l u t  5 k  ly 1 eat ma t o w r i t  c ar t  ar ia I vs a:. of v~a r a .en .  0 maxxie 1 at  .11 0—

men t t ’ r a r t y  . l t ’ a a s l a t  isy 1 ~‘.am m a t  ug a t O W  S a napi o r u le s , lea ex ettip le , cr eased
at : nest a tag i e  lo t  a e a r th  a pa S am e i t ad a c at  ad by t he saibr ;c 1 t pt a ama t’. t t  e t a

A fle:;t est a ei~~t a 5 t n s t a a p  e x i s t  a when  t h e i~~ a a ’  i n O t e ’ r : u t ’ r z c r  ap t  a m n  p am e ’rtt ho—
sea 5 l r r s e c a a t  ed w i t h  a . m i v o r a  ( ct - rn  1 l iar ;  t t i e t  o a r c  lot t o t s  .asa~a ’ a o t  e~l i s a t  h
t r a t  t e a t u . The ‘‘ c x l  a a ’’ a r i i ’ r a c a  i p t  a l o t  i t t i ’ t hese ’ t onus t h at  t lao t e i r r a  ‘1
I at ea oat  is  nes t  osi w i t  l a i n .  ih e  am scm car ;  q u a c k  ly ~lo~ a do wit I ~-h t n t  e m is  - -

t i ‘ t a r ;  r ;t t ,au hi be in s ’ lu~led .ini w ia a cia o t t e r ;  ‘;la ~a; ii be ’ e X t  l;m5le5i , as’ t r e ’:r Wa at at ; ;
he 5 emp l ot e  I u I l  — r an k mod e I fea . t r a v  der; 1st; , I ’ m e  t e r m  t t s l  C o  I he ’ 15 ’ 1

i r a ;  a ; ;  l t ’ : Inte  t .ac t i on s  bet We ’en any  t we to  t ans a n  t t a t ’ rr rosle ’ I shea 151 he ’ a n —
c i : h a l  , a t the r;ubst’ a ap t a t ha5at tat ’ in p a t en t  h o r t o n  t or t he t ;~a’ t 0 1155 t h at

a t  e be a ta; ~‘orra  i 5 l o r  i ’d I at  t r ; t  01 ac t  i ot a  ~lo iaot cor al  t a n  .aav aubs5 - a 1 pt a that

~ a e  t h e  :;arru ’ . l a t e  m a 5 ’ t t o r t s  ~1e net e nt e r  t he mode l I I~ two tea’mnt; 5-era t .a ar t

comma~~t; ‘ ; r a t a a ’ m  a p t  a i i i  p . a rcta t  he ’aes .

im a coritm ant • I lie ~t L T I V A R ” A N C E  pa e q a a r n  a eqaaa  m e n  t he ’ r i s e r  t o  slt ’t t r ; e ’
Si l t  ol ys a a e m  v a t  i on ce model by e ’aa I em i l is t  don a qmt  mat  a a - a’ a . it is  maaoa e

~I i t  t iCSl t t e wi - i t  o s’Oi a’Oc( ~105 iSa ;  mat a a s O S  , par t a c ula r  ly  w i t h  ‘ies a ~an  a

I t t , t t  i n c  1 am~le t reat iraq .arad high erie a a m ate tact i e r a s , and m o a t ’ s i t  i t  l s ’U i t  t e
eat  e m  t he ’ inn I t  i p ie co a~ ls t e a  I t a e ’ r a t ’ mat t ac o s  ; at e t h~’ p a s ’~l a am , t han t e
w a t o .1 ‘; a r t  a It ’  m&xie 1 r a t  .at  emen t .ar ; t t ’qii a m  esi by MAt”  btl  MMAs t- ’

i ’ Xj ’t ’ ci e~i Mean a51;a.a m e n .  A r ; e ’5’~’m a ~1 r a t  a e m ; a  t h e t t h at ’ MAt ” - R i t i I M A 5  1’ pa o—

q r.am a:; t h at  a t  ~ ‘a 5~~s i do:; a mat I ix sh ow i r i s ;  I t ie  expe5 ’ t i ’st U t0 . t t ~ r ; s l a m . a a  O tt  t em

o,a5 ’h t etiw i r a  t he  mrrsx ie  l . ri m is is pat t a cam l.aa lv use lu  1 whema trio lv :  In s  a .ara—

stem oa ari a xo5i  mode ’ I .ami .a I yr; i a et ~‘~a m I a r t5 t ’ sit ’r r a gm;:r . I i i  t t i e ’ b a t  a r a cr ’51 ~‘~ t : ;e ’

~~~ aase m can j inined i a t e ’ l’i’ i den t a f y  t h e  .appI ela I a t e  e a a e a  t ea’aaa: ; .arr i  i i~~t a —

a t y  h o w  t o  t ’OmtS t a-act or t ea- t erans a I a pt - a ep a  I .a t  e ~‘r aos sb r a o t  ox a at
MI ’ I T  I \ ‘A R I  AN CV ~Iet ’r ; r io t  i’ a - evi  sic (‘x~’e’s ’ t e l  mean aqu5aa’en , no in I hi a 55.ase’

tat ’ u ser  w ’am l~l maced t e c i i  cii i at  e t hems h u rine i i  1 o f i n d  I lie .appa  s’pl a ~t t  0

or a er t , ’mm s
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The expected mean square output frost MAD/RU MMAGE helps the no-
aoa mcher  identif y confounding in unbalanced analyses of variance de-
signs . The researche r ’ s objective may be to arrive at urnc onfounded
sums of squares that have the same expected mean squares as those found
in an analogous balanced analysis  of var iance  design. i f  the researcher
is not sure about the way in which the term s in the model are confounded
an a:; unbalanced design , the expected mean squares output from MAD!
Ri ’MMAt ;E will give the information , and the researcher can then order
5and i-corder terms in the model to eliminate the confounding . In those
cases where the researcher partitions the variance hierarchically, the
expected mean squar es output provides the researcher wi th  information
about the nature of the assumptions being made. The researcher is as-
signing confounded variance to one term rather than to others by assump-
tion , amid by ident ifying con founded terms , this assumption becomes ex-
plicit. The researcher can examine confounded terms to see if it is
rea:;onable to assume that one confounded term takes precedence over the
et he’ m s

Expected mean squares are also useful in identifying the confound—
trig that occurs with incosapiete block designs (i.e., designs in which
there are missing cells). When t here are missing cells (no observations
in one or more cells) , the resultant analysis requires the researcher to
assume that particular interactions are zero in order to (a) eliminate
con founding and (b) estimate parameters for all terms in the model.
These assumptions are similar to assuming that interactions are zero in
a Lat in  square design.  The estimated mean squares output will tell the
researcher which interaction must be assumed to be zero in order to
t’l ir aainat e confounding and make estimates for all terms . MULTIVARI ANCE
w i l l  also i d e n t i f y  confounded e f f ec t s  in the case of incomplete block
designs.

The expected mean square output may also identif y confound ing where
the researcher does not expect it. For example , adding covaniates to a
balanced analysis of variance design wi l l  produce confounded expected
mean squares for terms in the model , and the researcher may wish to ad-
just for this confounding.

Unbalanced Split-Plots. Both MAD/RUMMAG E and MULTIV ARIANCE are
• the only programs known to the author that can handle unbalanced split-

plot designs. Unfortunately, a problem arises with both programs in
analyz ing these designs : When the model statement for the analysis is
written in the customary manner , the core storage required by these de-
signs becomes extremely large , exceeding the capacity of nearly all
computer installations. Only designs based on very small sample sizes
can be processed in the customary manner. A procedure for getting
around the core space problem with the MAD/RUMMAGE program is given
Later in this paper. Future updates of the RUMMAGE progr am wil l  prob-
ably incorporate this procedure as an automatic part of the output for
split-plot designs. This would be desirable , since it is impractical
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a “l ’t a in  mul l a v a r i a t e  te sts for split— plot designs with larqt ’ samp lt~
a .r os as t ho req a tiam a a wr it t en now . MULTIVARIANC E p rev ~ie s a met ta ~x1

- t  set t i r ; m a round  t h e  c u r t’ space problem by transforming the  raw d a t a ,
~.il 1it;~; nor mult ivania te ’ t e a t s , ami d then p icking  up selected stat  a n t  r ca
: a 5 ’m n ; t h e  multivariate output . The details ot this statistical ptoct’siut~
h ive  boon described by Boek ( l i ) 7 5 ) . A second run is required t o  qet t h e
car  t o ot  means , s ince a t r ans fo rmat ion was made on the raw da t a  a r m  t hat ’

m i t  aj ,~ run . ,“ aac p ro blem wi t  ha thi s procedure is tha t  the output  fo r
a pj t t — p l e t  de s i g n s obtairted in t his way is not labe led con zec t  I .

A sop or  a 1 o rim ; cam ;  be made on another program l i ke  MAD/RUMMAGE or RMI )
t o  correct ly i d e n t i t y s t a t i s t i c: ;  a r m the MULTIVARIANCE output. MU I :lI—
V A R i A N C E  i t ;  t h t ~ c i i i  program I ha t can currently perform multivaniate

‘ a t  s to t  uaibalaraoc i , a p i  i t  —plot  des igns  that  are based on la r qe saxmmp le
S i :es

h,t t a M, u~aq em a ao Lt t  . The model statement t o t  MAD/RUMMAG E is easy t o
w m  a e . I ’ht c a r a t  al  c a r d  coam~n amad a t  m ;; ‘tur e tam RUMMAGE has been st i  OOt l v
simp l r t t t ’i t r u s t  t h e  e t u g i n a a l  MAi’ ve rs ion  ot t he  program. However , the

‘ a :  am ~ a ) a s  poorly docurnere e,l , (b )  has a agid requirements I ci the
a :‘n t hat t tie a rap s 5lat  5a must  be in to  i t ’ accepted by the program , and

I c )  h5is mao m i s s  r a t s  dat  a opt ton . 1’tit ’ an iep endemat  v ar i ab l e s  amaus be? n uts —
b o r e d  cr ’masecaj t ivel~’ r osa erie ~ t hit ’ :iuml)et of love is of the van  iab It’

an  mus I be in  sort e l  s) iL l t ’ • t h e a 5 ’ a oq~~i i enaent a m ean that the user  wi t  h
a l a r g e  i a td  t i l e  mus t  t ’r t t o :  a prog r am l i ke  ~PSS to recode var i ables , i t
raecess.ary , and eliminate miss  i r a q  ~~~~~ pass this dat a on a temporary
sa t  ,t t  oh t t i e  to a u t i l i t y  presirana that car; sort the j fldep~ n aie ’mit  v ar ia-
b l o t ; , and then pass th i s  f i l e  to t oe  final job step where the ana lysis
i t ;  t r a , isit ’ by MAD/RUMMAGE. This car; be accomplished in L ”a l t ’ run but is in—
‘ a t ;v e n i e i at  b r  the user. MI J LTIVA RIA N C E prov ides a user  suppl ied  sub—

r aSt ta u t ’ f or tn t  as; nq dot a • and coaac at en5It ion wi th  t~PSS for dot a so loot a om~
:es ’ a ’i a r i g , e tc .  M t IL T I V A R I A N C E  prov r 5les a variety of options for i nputtins
t he  da ta  in to  tha t ’ program. Ira g e m - m o r a l , MU LTIVAR IANCE is cons ide rab ly
more c o n i v er a t o n i t  than MAD/RUM MAGE for  the user with large dat a t i l t’s
makin~a mul t ip le  analyses  w i t h  the  same or s i m i la r  de signs .  The MAD
RUMMAGE p r o gr a m  p r o v i des usefu l  rn for aa ’ iat ioma about confound -ir i s  and about
hypot hes is  t e s t  i r a q  w i t h  random ,im;i mixed models.

l)iscrmaninant Analyses. MULTIVARIANCE provides a wider v ar i e t y  of
multivariate statistics than MAD/RUMMAGE includimag discrimiatant analyses
ar id c,a r;L -aa ical con re la t ion . It  is oft era useful to fo l low up S i s i r a  a t icant

m nu l t  ivariate anal yses of var iance tests wi th  d i s cr imi r i ama t  aaaa lys t ’s t o
i b a i t  a I y t he pa i t  I cu b r  sbependen t variables that were in f i  uer ;cesl most
by a siven independent var iable .  M UL TIV ARIANCE con provide 5iiscn im in a nt
, a n ; a l v s o s  for  ar t y  term in any mu ltivariate analyses of v a raa a i c t ’ desi~tra .
I ’i s ’r i m i n an t  analyses are not available w i t h  MAD/RUMMAGE. RUMMAGE will ,
h o w e v e r ,  provide analyses of categorical data , as described an the Cat e-
got ical Data section ct this paper for log-linear models.

_ _ _  
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A METHOD FOR ANALYSIS OF SPLIT-PLOTS

One of the chief limitations of the MAD/RUMMAGE Program, as it is
currently wr itten, is its inability to process split—plot designs based
on a large sample size. Even moderately sized samples very quickly ex-
ceed the core limitations of most computer centers . This problem is
unique to split—plot designs. Other designs, like factorial designs ,
can readily be processed even with very large sample sizes. A procedure
for gett ing around the core space problem with MAD/RUMMAGE is given in
this section of the paper.

The problem arises wi th  split-plot designs because they have more
than one “error ” term. These designs include one whole-plot error term
that is used to test the significance of between subjects or plots
(nonrepeated-measures) terms, and one or more split-plot error terms
that are used to test the significance of the repeated-measures or
spl i t—plot  te rm(s)  and interactions with these te rm(s) . The whole-plot
error term consists of a random subjec ts or plots term nested within
the between subjects or plots (nonrepeated) terms, while the split-plot
error term(s) consists of the interactions between each repeated—measures
(split-plot) term and the whole-plot error term. The model statement in
the current MAD/RUMMAGE progr am allows a person to include any number of
“error ” terms in the model statement ; however , only the last of these
error terms does not add to the core space required by the computer .
Each error term except the last one adds a dramatic amount to the re-
quired core space.

A method for analyzing these split-plot designs , suggested by
Hend rix (1975) , involves dividing the problem between the MAD/RUMMAGE
program and another program that can handle balanced repeated-measures
designs. This approach has several disadvantages: (a)  It requires
writing model statements that are unique to the dividing procedure ;
(b) it requires a fair amount of hand calculation (subtraction) ; (c) it
requires two computer programs; and (d) it cannot handle multivariate
analysis of variance.

Split—Plot Example

A different method for analyzing these split-plot designs, which
has some of the previous limitations but can be handled within tne
MAD/RUMMAG E program alone , is shown below . The complete ful l-rank model
of a split-p],ot design can be written as follows for the MAD/RUMMAGE
program :

Y(IJXL ) = T ( I )  + S (J) + TS(IJ)  + C(LI K )  + R ( L )  + TR(IL)
( 1)

+ SR(JL) + TSR(IJL) + CR(IJICL ) + E.
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Ir a t h i s  d e s i g n , t h e ’ terms T and S are between s ub i ec t s  or plots (non—
c ; e ’,it o h )  terms j:ad R is the repeated—measures or split—plot t e rm . As

the mode l is written above , C is the whole-plot error term and is used
t o  test the signi ra car ice of the terms which precede it in the model
ara 5i  CR is the spitt—p lot error term . The term E,  as w r i t t e n  above ,

a ‘Hr aims mao 5les~rot s a t  f reedom and serves only to t e rmina te  the  model .
The t~ and CR terms above require a great  deal of core storage. The
MAD/RUMMAG E p r o g r a m  is written so that the E term terminates the mode l
arid also collects t h e  surmus of squares due to any terms tha t  are deleted
t r om the comnip1t ~te f u l l — r a n k model. This being the case , it is possible
to rmmedu~tely delete the CR term f rom the model (as it is w r i t t e n  above)
, i r ; i 1 ‘t t h e  sums of squares for th is  term be collected by the E te rm.
lo w e - v t  I , t i h ~ C term w i l l  s t i l l  make the problem exceed storage capacity
:or •i l l  I u t  t h e  smal lest samples. Both the C and the  CR terms can b e  de-
leted from the model as fol lows :

Y (IJL) T(I) + S(J) + TS( I3) + R ( L )  + TR(IL) + SR ( J L )
( 2 )

+ TSR (IJL) + E .

th i s  ~ase , t he E t~ ’r r t ;  contains the sums of squares for both the C
~r ; 5t  CR terms . The sums of squares , degrees of freedom , estimated means ,
e~ - ., t a r  al l  other terms in the model besides E are c o r r e c t .  The prob-
1cm now becomes one of separating the sums of squares for the C and CR
t e r m s  t h a t  ott confound ed wi’~hin  the E term.

A :;t ’pa a , a t e  run can be made on MAD to obtain the correct sums of
- ;~1 t m i r t ’s for the C term , ar-id then the correct sums of squares for the
CR term can be obta in-med by subtraction f rom the E term listed in (2 )
above . To be specific , the individual responses or scores can be summed
.ac r  ass 4a 11 levels of the repeated factor R , and these sums can be run
w i t h  a MAD/RUMMAGE model that  includes  the between—subjects  or plot s

t t or t r ep e a t e d )  terms, T and S , and excludes the repeated—measures t e r m  R :

Y(IJ) = T ( I )  + s( J )  + TS( I J)  + E. (3)

The sums of squares for  the  E term in (3)  above are equivalent to the
sums at  squares for the C (whole-plot error ) term in ( 1) , a f t e r  the E
term ira ( 3 )  has been divided by the number of levels of the repeated
fa ct o r  R. The sums of squares for the whole—plot error (norarepeated)
e r t o r  term are thus obtained by dividing the E in (3) by the n umber of
1 - v e l s  of the repeated factor R , and the sums of squares for CR are ob-
tained by subtracting the whole—plot error term from the E in ( 2 ).  The
number of degrees of freedom for the whole-plot error term as obtained
t m - a (3)  is correct , and the number of degrees of freedom for the CR term
is obtained by subtracting the number of degrees of freedom for the
whole-plot error  term from the number of degrees of freedom given for
the’ E term in ( 2 ) .

~~~~~~~ ~~~~~~
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General Split—Plot Procedure

The above approach can be generalized to any spli t-plot  analysis
of variance design as fol lows :

1. Any split-plot design can be analyzed , but each design wi l l
require as many separate runs w i t h  d i f f e r e n t  model statements as there
,are error terms in the model.

2. The f i r s t  run  should include all terms in the complete f u l l —
rank model except for the error  terms, which should be deleted . This
run will produce the correct sums of squares and degrees of freedom for
a l l  terms included except for the £ term , which w i l l  contain the sum of
the sums of squares and degrees of freedom for  all error terms in the
model.

3. The whole—plot error term can be obtained in a separate run by
summing individual  scores across al l  levels of each repeated—measures
factor  in t i m e  model. If there is more than one repeated—measures factor ,
these scores should be summed over all levels of all of these factors.
These sums are then run on MAD/RUMMAGE using a model statement that in- ~

‘

cludes the terms tested by the whole—plot error and excludes the terms
tested by the spl i t—plot  e r ro r( s) . The sums of squares for the E term
of this  model is divided by the sum of the number of levels of the
repeated-measures f a c t o r ( s )  in the model.

4. When there is more than one spl i t—plot  error term , one run
with a distinct model statement is required for each sp l i t—plot  error
term in the model , except for the one that is entered last.

a. The first split—plot error term is obtained by summing
individual  scores across all levels of the repeated-measures f a c t o r( s)
except for the repeated—measures factor that enters into the error term
being obtained . A hypothetical repeated measures factor B , for example ,
should be tested by the B x subjects interaction , so in this case in-
dividual scores should be summed across all levels of repeated—measures
factors that happen to be in-a the model except for B. A run is than
made on the MAD/RUMMAGE with a model that  includes all  terms tested by
the whole—plot error and all terms tested by the B x subjects int erac—
tion . Al l  terms tested by all other split-plot error terms that are
in the model are excluded . All error terms except for the final E
should , of course , also be excluded from the model statement , so that
in this case the E collects the sums of squares for the whole—plot error
plus the B x subjects interaction. The sums of squares for the E term
resulting from this run shou).d be divided by the sum of the levels of
repeated—measures factors that are in the model besides the B factor .
The correct sums of squares for the B x subjects interaction can be

— obtained by subtracting the whole-plot error term from the E term ob-
tam ed in this run that has been divided by the n umber of levels of
repeated factors as given above.
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being tes ted.  The determinants  are in  error when usi ,a .~ the pr a ’.’edinq
subt r action approach with mult ivariate analysis of variance , sl nr-o tha ’
de te rminan t  01 the d i f f e r e nc e  between matrices is not equa l to t h e
d i f f e r e n c e  between tire determinants of two matrices. To obtain t h e
correct determinants , the matr ix  for t h e  whole-plot error would have
t o  Is’ subtracted from the matm ices for the other terms in the model
and ~k-’tetminants calculated for these ditterences. Although the ap-
p i~apr jate mat r i ces  can be obtained from the MAD/RUMMAGE package, the
amount of calculation required to subtract matrices and calculate mtc’-
t a ’ n m i m m . m r m t s  obviously exceeds what is practical to do by hand .

a ’Tl’l’EGm~RlCA L DATA

T ’-ayc lr o loqis t s  cm) l l ec t  ,l.-at a t hat are generally measured on nom ina l
or ordinal scales . Results are of ten  expressed in the form of ft  e m l a m o n . ’y
tabulat i ons in one-way , t wo—way , and multiway tables. Such data are
.st t en analyzed with the traditional Pearson chi—square statistic as

~a p pI i e d  a epeatedly to d i f f e r e n t  subsets of the total  possib le number of
tw o—dime ns  i a m a • -r I t ables .  Army m:osearcherr ;  of t  on have occasion to m ea—
sure such nomnta .a l v a r ia b l e s  as race , sex , MOS , mission  t ype (combat ,
support)  , e t c .  Cateqom i m O  1 d~~t a of tb  is natur e’ are I a an q iae r m t  ly anal y ;a ’,l
by the  repeated aa ,”a’l icat  ion of ‘. lii’ ‘a’ a ’ai son chi— square st a ti  st Ic  I a aI  I
a,’oss ib Ic’ cmam lai nat  iomas  at  I wo—w ay t ab les , us im a g the hl’SS L’t osst al’s p t a a —
c e dm a m e . Even o r d i n a l  ‘l at a , i nc lud ing  c a r d i n a l  quest i ommm r a 0 I ospamoa ’s
are often expressed in terms of t he  percentages of subject a who rai ’le ’. t , ’d
particular responses , particularly since data presented a n  I him ; way are
eas i ly  mmatei ~ ’m ote~i by nonresearchers in  terms oh the om i q a m a ,-al sm ’iles.
However , it is oft om a difficult , ansi in some cases Im possible , (am a
researcher to t~ st the hypotheses of interest in terms of two-way coma-

t inqency tables. In many cases the researcher runs mul t i p l e  t c ’,; 1 ; i n
order to test hypotheses that have been stated in a (a aqment.~ry  f,a mrn.

The use of l inear regre ssiom -a models for t he’ analys es-a at  mu lt i.hinremr-
sa o n al  categorical tables has been descr ibed by m ; t - j~ a - l c ’ , Starmer , and
Koch (1969). This approach provides a comprehensive method for the

— statis ti cal analysis of qualitative data that is dir e ct l y amr , a lo q o m ns  a n
scope an d power to multiple regression and mull ivariate analysis ol
variance arm applied to quantitative data (Koch & R e i t a f u a t , .1( 171 ) ) . T h i s
approach provi ’les a bett or method for t e s t i n g  many hypotheses t h a n  t ime
repeated application of the Pearson chi—square . A p p l i c a t i o n s  of this
methodology are beginning to appear m r  the social ~ela --am-am ’c l i t e r a t u r e
(see a,il es , Gat l irr , & Cataldo , 1976) . This least squares ;a i q am meaa ’h I a

the analysis of categorical data has been programed and is available as
a Fort ran program called GEN~AT (Landis , Stanish , Freeman , a-a Koch , isa / a - a ) . ’

2
Thjs program has been implemented at IBM 360/370 installations. It

will shortly be modified to be compatible with non-IBM machines . The
program is available from Dr. Ri chard Landis , Dept. of Bi os tat is ti cs ,
Un iversi ty of Michigan , Mn Arbor , Mich igan 4*3109. Army Research 1mm-
s tit u te , Presidio of Mon terey Field Unit , has a copy of this proqr,’im.
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tac t inim~~ Cat ocjarical Data Models

mu s t  as wi t  Ii anr a lysi  s of var i ~am a c ’c’, the t ype of •ima.a l y  a m i s  t ha t  a a;
made w i t h  categorica l da t  a depends on the specifi~-at ions  of the under-
l y i n g  model. The u n der l y i n g  model depends on the sampii mm ’m plan c a t  the
c’xpo a iment. The f rst step in spec- i  fy ing the mo le- a l for • ~~~~‘ ana l y - ;  a a ;
a ’- a to d istinguish between (a) t h e  var iables that measur e t~ mo c’xpc ’l i-
mental conditions or subgroups t o  which subjects belong •in~’ (b) the
variables that measure what subsequently happens t a - a  ~ub l e ” t  s. All t’as--
sil- a l e combinations of levels of the variables mear aamm- in q c’ qsr ’ m m m r ’ m a t  al
cm-ansi ; t ioa-ig c-ai subq m cira l’ s  define I he “populat i c’aas ” c a m  ¶ i c t  c am s ,“ in I i s’
mI(’a4 i qn •-ara ~1 the possible ccanal a i nat  i c - a m - a s  a t  va-a t abi  o•; measum i m c a  what - la - a l ’ - -
pens to scal a a o•’t a; d c -’ fine the  responses . “ A I -al’ lea of pm cap~am I a ama a; ‘Ic ’-
I imaed lay the n umber of rosp ama so conabinat mom a ma , lay the number c at  i-oI’mm 1.-a-
tions , as entered hat,a GENCAT.

Multidimensional cent i ngency tables are entered into ci - ~N~’A 1’ •ac cam ci-

m g  to how the mode l has been defined in terms of popmmlat iam as and m e -
ampem -ase s . Several general types of models can be i s t e m i t  i f  led :

1. No factaa , mu1timr ’spomasr ’~
2 .  Uni factor , mult m roshscnaso;

l’I a nl t i  f i t  am , cl a i m a ‘s b ’c a r a a e ’ -‘ansi
4. Multifactom , m u l l  iresponse .

Can a l y Models 1 and 2 can a~’cair  w i t h  two—way ( al - a l  es , ansi  Mode I s  I Ham a ’r asm h
3 1,- a m t h m c ’ r — w a y  I • i I - a I e s ,m a t he’r w i a m e  ,-ai I models  cam a - a c c a m m

Made I. 1 . Thea s i ma c ’-~~
- i a m aa a  t h a t  am a’ •-a a m k a ’ ei j~ il ~ - ,-a’s’ -c t  the as’ ( i c —

I c i a  , mamar l i  I m o s l ’ , - a m m s r ’  r r a , a , Io l  •am c ’ - m m mii ~‘,raa m q t s r ~laac ’’ at i c - a m s tha t -  would  he -a~~k e ’ cI
t m - a  repeatrd—nnea;rure s anal y sis  c -c f va r m  am a ‘ c-a ,les i ~mr as where •-a 1 1 t t a r  I -a ‘I ~‘ms
(one or more) in the design are l -c ’b’ eat e~i-measures  t ac t  am - s. A 

~~~ 
oI ’lem

of interobse r ye-a r agreement coma I i  a I Sc -a f i t  a m m a ~1r’m Mode l I • a mac - c’ .111 ‘i’
servers rate the same person/si t  nat  ion • the a it i a - cur ;  f i t  i n  I lao naolci at
a repeated—measures ana lys is  of v •ar i a t ac c ’  c l r s i g a a . lhowr ’ve a , i n t h i s  ca -a r ’
hypotheses of interest w ou l d  m d  aide’ m ac at o n l y  I c-asts c at  I he d i  f t  em “ m a c e ’S
between prop .-art  ions but also aqreemeaat l ay t s ot  t r e a s o n :  Ia ; aqreeme- am 1 c i t  f t e ’ a
emit from that expected by ch ance  a l c - a a a e ’

Model 2. in the case’ of um a i f - a c t  em , mu I t  i m - c’sl’oam nc’ t -ti ’ I ear ; , t he
questions asked are • a a a a l . acica ars to those asked with c amre-wciy ma nlt a r m  iat e
a n a l y s i s  of variance designs.  In clesi  c a m a s  of I i r i s  mu -i t ma le , the a-eseam clac’~
is I n i  or est ed j a m  the assoc i at  ion among clc sa , ’om ade m i t ~‘m a easpc ’mma ac ’  y a m  a -il-al a’s
as well as the  In f l u e n c e  of the i ndep endent ~a m t act  c - a a i’.- a m a -al’le c-an I ia.’

resporrse variables . W i t  Ii one fac t  or .amacl a sc- ’a - iPS  c a t a m eSisans (’ it r’

c-a c - c a i (‘S , l ame s t  I c a n a s  asked include ( a )  t he  influence of time’ tac t c- am- ‘mm l iar ’
marginal cii s-a t a ibutloaa c -af  the a esl’a a ase , and (h) the influence of I lac ’
Lactor on the joint distribution of tire r response t’,it (‘c t c ’m i t ’s .
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Model 3. In the case of mu ltifactor , uniresponse tables , the de-
s ign is direct ly analogous to factorial analysis of variance designs.
H ere the researcher wishes to determine how the factors or independent
variables combine to produce the resp onse or dependent variable. The
r esearcher can test for ‘main effects ” for the factors and for “ m a t e r-
action e f fec t s , ” just as in analysis of variance , except in th is case
the researcher is looking at dii ferences between proportions instead
of means. An example of multifactor , uniresponse problems, may be in—
structive at this point. Table 1 presents a hypothetical factor by
ae’sporrse matrix of proportions in a form that could be entered into
GENCAT . Both columns of proportions are entered into the program , but
a trarrsfornmation matrix is entered to eliminate the second column , be-
Ccluse (a) we are only interested in comparing proportions who received
Article 15’s, and (b) computations cannot be made when singularity
exists (i.e., when the rows add up to 1.0). Singularity also exists
when a proportion in the table is zero. When a zero enters into the
table , the levels of the factors must either be collapsed to eliminate
the zero , or el:-:e the zero must be replaced by a small proportion to
eliminate the singularity . The GENCAT output for Table 1 would include
o m o  chi—square statistic testing significance for the main effect of
Race , one for Rank , and one for the Race x Rank interaction .

Table 1

Example of Multifactor , Un iresponse Problem

Proportion Proportion not
Race Rank receiving AR—iS receiving AR-iS

Black Enlisted .30 .70
Black Officer .00 1.00
White Enlisted .20 .80
White Officer .02 .98

Note. Race and Rank define the factors or populations; the response
is defined by receiving or not receiving Article 15 punishment .

The GENCAT results can be briefly ccmaupared to traditional results.
Separate Pearson chi-square statistics could have been readily computed
im a Table 1 for the effects of Race and Rank, but not for the interaction
between these factors. With the GENCAT approach , each term in the model
is adlusted for the other terms, in a manner analogous to least squares
analysis of variance or multiple regression--which would not have been
the case had two Pearson chi—square statistics been computed . Also ,
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these programs provide powerful tools for psychologists doing f ie ld 
I 

- 
-

‘research . Psycho logists often find them selves with (a )  unequal sample
sizes an  t ie ld  expe r iments due to lack of contro l , (b) multiple depen-
l ent  variables as part of an evaluation research design , and (C )  large

quant it ies  of nomina l or ordinal categorica l data . The generalized
software pack ages described here can handle many of the an alysis re-
qu r renrents t ot  th e type s of data listed above .

H-
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